Screening for Triterpenoid Saponins in Plants Using Hyphenated Analytical Platforms.
نویسندگان
چکیده
Recently the number of studies investigating triterpenoid saponins has drastically increased due to their diverse and potentially attractive biological activities. Currently the literature contains chemical structures of few hundreds of triterpenoid saponins of plant and animal origin. Triterpenoid saponins consist of a triterpene aglycone with one or more sugar moieties attached to it. However, due to similar physico-chemical properties, isolation and identification of a large diversity of triterpenoid saponins remain challenging. This study demonstrates a methodology to screen saponins using hyphenated analytical platforms, GC-MS, LC-MS/MS, and LC-SPE-NMR/MS, in the example of two different phenotypes of the model plant Barbarea vulgaris (winter cress), glabrous (G) and pubescent (P) type that are known to differ by their insect resistance. The proposed methodology allows for detailed comparison of saponin profiles from intact plant extracts as well as saponin aglycone profiles from hydrolysed samples. Continuously measured 1D proton NMR data during LC separation along with mass spectrometry data revealed significant differences, including contents of saponins, types of aglycones and numbers of sugar moieties attached to the aglycone. A total of 49 peaks were tentatively identified as saponins from both plants; they are derived from eight types of aglycones and with 2-5 sugar moieties. Identification of two previously known insect-deterrent saponins, hederagenin cellobioside and oleanolic acid cellobioside, demonstrated the applicability of the methodology for relatively rapid screening of bioactive compounds.
منابع مشابه
Direct detection of triterpenoid saponins in medicinal plants.
Direct detection of saponins in medicinal plants using Fourier Transform Infrared (FTIR) spectroscopy is reported in this paper. Crude dry plant powders were mixed with potassium bromide (KBr) powder and compressed to a thin pellet for infrared examination. FTIR spectra of the test samples showed -OH, -C=O, C-H, and C=C absorptions characteristic of oleanane triterpenoid saponins. The C-O-C abs...
متن کاملTriterpenoid Saponins from Anemone rivularis var. Flore-Minore and Their Anti-Proliferative Activity on HSC-T6 Cells.
Five previously undescribed triterpenoid saponins (1-5), along with eight known ones (6-13), were isolated from the whole plants of Anemone rivularis var. flore-minore. Their structures were clarified by extensive spectroscopic data and chemical evidence. For the first time, the lupane-type saponins (3 and 12) were reported from the Anemone genus. The anti-proliferative activity of all isolated...
متن کاملCandidate Genes Involved in the Biosynthesis of Triterpenoid Saponins in Platycodon grandiflorum Identified by Transcriptome Analysis
BACKGROUND Platycodon grandiflorum is the only species in the genus Platycodon of the family Campanulaceae, which has been traditionally used as a medicinal plant for its lung-heat-clearing, antitussive, and expectorant properties in China, Japanese, and Korean. Oleanane-type triterpenoid saponins were the main chemical components of P. grandiflorum and platycodin D was the abundant and main bi...
متن کاملDe novo leaf and root transcriptome analysis to identify putative genes involved in triterpenoid saponins biosynthesis in Hedera helix L.
Hedera helix L. is an important traditional medicinal plant in Europe. The main active components are triterpenoid saponins, but none of the potential enzymes involved in triterpenoid saponins biosynthesis have been discovered and annotated. Here is reported the first study of global transcriptome analyses using the Illumina HiSeq™ 2500 platform for H. helix. In total, over 24 million clean rea...
متن کاملTriterpenoid Biosynthesis and Engineering in Plants
Triterpenoid saponins are a diverse group of natural products in plants and are considered defensive compounds against pathogenic microbes and herbivores. Because of their various beneficial properties for humans, saponins are used in wide-ranging applications in addition to medicinally. Saponin biosynthesis involves three key enzymes: oxidosqualene cyclases, which construct the basic triterpen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 21 12 شماره
صفحات -
تاریخ انتشار 2016